Oxydes de Plomb. I. Structure Cristalline du Minium Pb₃O₄, à Température Ambiante (293 K)

JEAN-RAYMOND GAVARRI ET DOMINIQUE WEIGEL

Laboratoire de Chimie—Physique du Solide, E.R.A. au CNRS No. 456,* C.S.P. Université Paris—Nord et Ecole Centrale des Arts et Manufactures, 92290 Chatenay—Malabry, France

Received January 25, 1974

The structure of Pb_3O_4 at 293 K has been refined to an R value of 0.06, using 29 neutron diffraction data obtained from a powdered sample.

Oxygen atoms are displaced in the quadratic cell (space group $P4_2/mbc$; a = 8.811 Å and c = 6.563 Å) with respect to previous results obtained by several authors. The interatomic Pb^{IV}-O and Pb^{II}-O distances are compared with those found in other lead oxides. While the oxygen octahedra around Pb^{IV} atoms are characterized by bondings a little too long, the divalent lead coordination is characterized by bondings a little too short.

I. Introduction

La structure cristalline du minium Pb_3O_4 a déjà fait l'objet de divers travaux utilisant la diffraction des rayons X (1-3) pour déterminer la maille et localiser les atomes de plomb, et la diffraction des neutrons pour localiser les atomes d'oxygène.

Fayek et Leciejewicz (4) ont affiné cinq paramètres de position des atomes de plomb et d'oxygène à partir des intensités de 11 raies seulement de diffraction des neutrons. Ils obtiennent un facteur R de 8.1% et utilisent une maille quadratique contenant quatre groupements formulaires et de paramètres a = 8.82 Å et c = 6.59 Å. Le groupe spatial de symétrie est $P4_2/mbc$ (D_{45}^{45}) .

Dans cette structure la coordination des atomes Pb^{Iv} est de 6 et celle des atomes Pb^{Ii} est de 4. Les distances Pb^{Iv} -O annoncées par ces auteurs (2.13-2.14 Å) sont tout à fait compatibles (bien qu'un peu plus courtes) avec les distances Pb^{Iv} -O trouvées dans les autres structures des oxydes de plomb (cf. Tableau I). En revanche la distance Pb^{Ii} -O de 2.13 Å donnée par Fayek et

Copyright © 1975 by Academic press, Inc. All rights of reproduction in any form reserved. Printed in Great Britain Leciejewicz est tout à fait inexpliquable car les plus courtes distances Pb^{II}–O observées dans les autres oxydes de plomb sont comprises entre 2.21 et 2.30 Å (cf. Tableau I).

Cette anomalie justifie la reprise de l'étude structurale du minium avec un nombre plus important de données expérimentales.

II. Partie Expérimentale

La poudre cristalline étudiée a été obtenue en recuisant quatre jours à 480° C et à l'air libre un produit MERCK Pb₃O₄. Le dosage iodométrique des ions Pb⁴⁺ à l'aide d'une méthode utilisant l'EDTA (10, 11) a conduit à un oxyde PbO_x avec $x = 1.331 \pm 0.003$.

Des diagrammes précis de diffraction des rayons X ont montré que, avant le recuit, les raies (*hkl*) avec $h \neq k$ sont légèrement élargies, mais que ce léger élargissement a presque complètement disparu après le recuit. De telles observations ont déjà été faites antérieurement (2, 12). Katz (12) signale en particulier l'existence d'un minium pseudoquadratique.

Les paramètres de la maille ont été affinés à partir d'un ensemble de 15 distances

^{*} Etude des transitions de phase par diffraction des rayons X.

	(en Å)	
Oxyde	Pb ^{IV} –O	Pb ^{II} –O
$PbO_2\alpha$ (5)	2.16 (×4) 2.17 (×2)	
$PbO_2\beta(6)$	2.15 (4) 2.16 (×2)	
Pb2O3 (7)	$\begin{array}{c} 2.08 \\ 2.14 \\ 2.16 \\ 2.17 \\ 2.26 \\ 2.28 \end{array} (\times 1)$ $\langle 2.18 \rangle$	$\begin{array}{c} 2.31 \\ 2.43 \\ 2.44 \\ 2.64 \\ 2.91 \\ 3.00 \end{array} \right) (\times 1)$ $\langle 2.62 \rangle$
Pb3O4 (4)	2.14 (×4) 2.13 (×2)	2.13 (×1) 2.18 (2) 3.01 (1)
PbO (8) (quadratique)		2.30 (×4)
PbOβ (9) (orthorhom- bique)		$\begin{array}{c} 2.21 \pm 0.02 \; (\times 1) \\ 2.22 \pm 0.02 \; (\times 1) \\ 2.487 \pm 0.006 \; (\times 2) \\ <2.35 \rangle \end{array}$

TABLEAU I^a

DISTANCES INTERATOMIQUES DANS LES OXYDES DE PLOMB

" ($\times n$) signifie que cette distance apparait n fois dans le polyèdre de coordination. Le signe $\langle \rangle$ indique que la valeur encadrée est la moyenne des distances dans le polyèdre de coordination considéré.

réticulaires calculées d'après un diffractogramme X très précis de l'échantillon recuit. Les résultats suivants ont été obtenus: $a = 8.811 \pm 0.005$ Å; $c = 6.563 \pm 0.003$ Å.

A l'aide d'un diffractomètre à neutrons du réacteur EL3 du C.E.N. de Saclay, nous avons obtenu 29 raies et groupes de raies séparés entre 5 et 44 degrés 20 pour une longueur d'onde de 1.140 Å.

L'échantillon est placé dans un cylindre en vanadium de 10 mm de diamètre. Des fentes limitent la divergence horizontale du faisceau. L'enregistrement, entièrement automatisé, a été réalisé avec un pas à pas de 5×10^{-2} degré 2 θ .

III. Détermination de la Structure

Les coordonnées relatives des atomes de plomb et d'oxygène ont été affinées à partir des valeurs données par Fayek et Leciejewicz (4). Les longueurs de diffusion atomique sont respectivement égales à 0.96×10^{-12} cm et 0.577×10^{-12} cm.

Le programme d'affinement utilisé (14) minimise la quantité $M = \sum_{i} (I_{obsd}^{i} - I_{calcd}^{i})^{2}$ et calcule le facteur d'écart:

$$R = \frac{\sum_{i} |I_{obsd}^{i} - I_{calcd}^{i}|}{\sum_{i} |I_{calcd}^{i}|}$$

Les valeurs de I_{obsd}^i et I_{calcd}^i du Tableau II sont en fait les valeurs normalisées des intensités observées et calculées des raies ou groupes de raies correspondant à l'indice *i*.

$$I_{\text{calcd}}^{i} = I_{o} \times \sum_{(hkl)_{i}} \frac{1}{\sin \theta \sin 2\theta} \times P_{hkl} \times |F_{hkl}|^{2} \times e^{-w};$$

 I_{o} est une constante de normalisation; P_{hkl} est le facteur de multiplicité, F_{hkl} le facteur de structure, e^{-w} le facteur de Debye-Waller avec $w = B(\sin \theta / \lambda)^2$; la sommation porte sur toutes les raies (hkl) appartenant au groupe *i* mesuré. Aucun facteur de pondération n'a été utilisé. Le nombre de données étant insuffisant, les coordonnées atomiques ont été affinées en prenant un facteur de Debye-Waller e^{-w} égal à 1. Le facteur final *R* est alors de 6.7%.

L'estimation du facteur d'atténuation thermique, étant donné le faible intervalle de $(\sin \theta/\lambda)$ sur lequel s'étend le diffractogramme, a conduit à une valeur peu significative de *B* qui est de l'ordre de 1 ± 0.5 Å². Introduit dans le calcul des intensités, le facteur *B* de 1 Å² a permis d'abaisser le facteur *R* à $6\frac{6}{100}$, les coordonnées atomiques étant fixées.

Le Tableau III précise les cinq coordonnées atomiques et les écarts-types associés des 16 atomes d'oxygène qui se trouvent en position (g) et (h) et des huit atomes de plomb situés en position particulière de Wyckoff (h) du groupe $P4_2/mbc$.

TABLEAU II

INTENSITÉS CALCULÉES ET OBSERVÉES

h k l	I ^t _{calcd}	I^{l}_{obsd}
110	2953	2957
200	30	98
210	115	130
201	427	358
211	4510	4253
002	259	244
220	1001	986
112	1340	1206
310	755	717
202	494 521	521
311	27) 521	521
212	2696	2729
320	980	1026
321	597	497
222	755	749
400	932	855
410	316 336	472
312	20)	=
401	$\frac{21}{116}$	155
330	95 /	
411	1404	1499
420	1007	
322	960 } 2086	1980
203	119)	
213	1413	1564
421	231	171
402	2907	2868
412	094 50.)	125
430	2020 3979	3845
510	124)	
313	124	
431	347 908	1095
422	400	1095
511	25	
004	1830)	
520	43 \ 2170	2200
323	297	
521	632)	
114	372 1004	1141
440	1106)	
432	25 } 1142	1035
403	11	
204	7	
512	1806 } 2610	2599
413	797 J	

IV. Description de la Structure et Comparaison des Distances Interatomiques dans les Divers Oxydes de Plomb

Les distances et les angles interatomiques sont indiqués dans le Tableau IV, et la Fig. 1 représente la projection orthogonale de la structure sur le plan (001).

La moyenne des distances Pb^{Iv} –O vaut 2.18 Å et elle est très légèrement supérieure aux distances Pb^{Iv} –O observées dans les autres oxydes de plomb (cf. Tableau I). Cette liaison est la plus courte dans cette structure et caractérise sans ambiguité une liaison covalente partielle Pb^{Iv} –O.¹

Le polyèdre de coordination du plomb IV est donc presque un octaèdre régulier représenté sur les Figs. 2 et 3(a). Ainsi deux de ces oxygènes (O_{1a} , O_{1b}) ne sont liés qu'à un seul atome de plomb tétravalent avec un distance de 2.13 Å alors que les quatre autres (O_{2a} , O_{2b} , O_{2c} , O_{2d}) sont liés chacun à deux atomes de plomb tétravalents avec des distances de 2.20 Å.

L'empilement des atomes dans la structure du minium est donc caractérisé par l'existence de chaines d'octaèdres ($Pb^{Iv}-O_6$) chaque

FIG. 1. Structure de $Pb_3O_4 = projection$ sur le plan (a, b).

 1 La somme des rayons ioniques de Pb^4+ et O^2- est en effet de 2.24 Å

TABLEAU III

Groupe spatial	Selon Fayek and	Nos rés	ultats
$P4_2/mbc$	Coordonnées	Coordonnées	Ecart type
8(O) en positions g	x = 0.672	x = 0.671	0.0020
8(O) en positions h	x = 0.114	x = 0.096	0.0020
	y = 0.614	y = 0.637	0.0026
8(Pb) en positions h	x = 0.143	x = 0.140	0.0013
	y = 0.161	y = 0.163	0.0013

POSITION DES ATOMES

ΤA	BL	EΑ	U	IV

DISTANCES	Interatomiques dans $Pb_3O_4 \ge T = 293 \text{ K}$ (en Å	()
-----------	---	------------

	Distances selon Eavek et	Nos résulta	ats
Type de distance	Leciejewicz (4)	Distances	Ecart type
Pb ^{IV} -O	2.14	2.20 (×4)	0.02
	2.13	2.13 (×2)	0.03
Pb ^{II} –O	2.18	2.215 (×2)	0.03
	2.13	2.337 (×1)	0.04
	3.01	2.73 (×1)	0.04
$Pb^{iv} - Pb^{iv}$	3.28	3.282 ± 0.002^a	
Pb ^{II} -Pb ^{II}	3.79	3.79	0.04
	4.24	4.24	0.04
		4.11	0.04
0-0	3.28	3.282 ± 0.002ª	
	2.86	2.88	0.02
	2.97	2.93	0.02

^a Erreur estimée.

Pb^{Iv} ayant ainsi six atomes d'oxygène dans son entourage immédiat.

Deux octaèdres adjacents ont une arête (deux atomes d'oxygène) en commun: de telles chaînes correspondent donc à la formule chimique ($Pb^{IV}O_4$)_n.² La Fig. 2 représente l'une de ces chaînes, toutes parallèles à la direction du vecteur c. Deux de ces chaînes se projettent sur chaque maille ainsi qu'on le voit sur la Fig. 1 et on passe de l'une à l'autre par une rotation hélicoïdale (4_2).

La moyenne des distances Pb^{II}–O vaut 2.37 Å. Les distances les plus courtes (2.21 Å) sont compatibles avec les distances Pb^{II}–O observées dans les autres oxydes de plomb (notamment PbO β , cf. Tableau I). La distance Pb^{II}–O de 2.13 Å selon Fayek et Leciejewicz

² Comme dans l'oxyde PbO₂ β mais dans ce dernier chaque atome d'oxygène est commun à deux "chaînes" qui sont donc toutes adjacentes. Dans cette structure au contraire chaque oxygène n'appartient qu'à une seule chaîne et des atomes de plomb divalents relient les chaînes les unes aux autres.

FIG. 2. Structure de $Pb_3O_4 = perspective partielle$ $illustrant l'agencement des chaînes <math>(Pb^{IV}O_4)_n$ et des pyramides $Pb^{II}O_4$.

FIG. 3. (a) Octaèdre $Pb^{IV}O_6$ "maillon" d'une chaîne $(Pb^{IV}O_4)_n$. (b) Pyramide $Pb^{II}O_4$.

IADLEAU V	ГABL	EAU	"V"
-----------	------	-----	-----

Angles dans les Polyèdres de Coordination (en Degrés)

$O_{1a} - Pb_{(1,2)}^{II} - O_{1a'}$	95° (2°)
$O_{2'} - Pb^{II}(1) - O_{1a}(\times 2)$	86° (2°)
$O_{2'}-Pb^{II}(1)-O_{2d}$	144° (4°)
$Pb^{II}(1) - O_{1g} - Pb^{II}(2)$	136° (3°)
$Pb^{II}(1)-O_{2'}-Pb^{II}(1')$	134° (3°)
O _{2a} -Pb ^{IV} -O _{2b}	84° (2°)
Pb ^{IV} -O ₂ -Pb ^{IV}	96° (2°)
$Pb^{IV}-O_{1a}-Pb^{II}(1)$	112° (3°)

" Entre parenthèses: l'écart type approximatif.

(4), a une valeur de 2.34 Å d'après nos résultats, les écarts-types étant de l'ordre de 0.04 Å.

Le polyèdre de coordination du plomb II est une pyramide à base quadrilatère gauche représentée sur la Fig. 3(b).

Ces liaisons Pb^{II} -O assurent la cohésion entre les chaînes $(Pb^{IV}O_4)_n$ (cf. Figs. 1 et 2).

Dans chacune des pyramides, trois atomes d'oxygène sur quatre appartiennent à la même chaîne $(Pb^{IV}O_4)_n$ (deux du type O_1 et un du type O_2). Le quatrième appartient à une autre chaîne voisine de la précédente (il s'agit d'un oxygène du type O_2). Cet agencement est représenté sur la Fig. 2 et en projection sur la Fig. 1.

Chaque atome de plomb divalent est donc relié aux quatre atomes d'oxygène par trois liaisons à caractère covalent partiel marqué $(2.21 \text{ Å} (\times 2) \text{ et } 2.34 \text{ Å})$ et une liaison à caractère ionique prédominant (2.73 Å).

On distingue deux types d'atomes d'oxygène.

D'une part, les atomes notés O_1 ont comme voisins immédiats un atome de plomb IV et deux atomes de plomb II, l'angle $Pb_{(1)}^{II}-O_1 Pb_{(2)}^{II}$ valant 136°. Ces trois atomes de plomb forment un triangle dont le plan contient l'atome O_1 .

D'autre part, les atomes O_2 ont pour voisins immédiats deux atomes de Pb^{II} (l'angle $Pb_{(1)}^{II}-O_2-Pb_{(1')}^{II}$ valant 134°) et deux atomes de Pb^{IV} (l'angle Pb^{IV}-O₂-Pb^{IV} valant 96°). Les atomes de plomb constituent un

FIG. 4. Polyèdres de coordination des atomes d'oxygène O_1 et O_2 .

tétraèdre irrégulier autour de l'atome d'oxygène.

La Fig. 4 représente ces deux types de coordination présents dans la structure: le polyèdre de coordination de O_1 est donc un triangle isocèle alors que celui de O_2 est un tétraèdre irrégulier. La maille contient un nombre égal d'atomes O_1 et d'atomes O_2 .

En conclusion, on remarque que dans cette structure quatre liaisons Pb^{iv} -O sur six sont un peu trop longues alors que deux liaisons Pb^{II} -O sur quatre sont un peu trop courtes.

La covalence partielle des quatre liaisons Pb^{1v}–O de 2.20 Å est donc moins marquée que dans les oxydes PbO₂ β , PbO₂ α et Pb₂O₃ alors que la covalence partielle des deux liaisons Pb¹¹–O de 2.21 Å est plus forte que dans les oxydes PbO α , PbO β , et Pb₂O₃. Ce dernier fait explique que la dilatation volumique de Pb₃O₄ quadratique soit anormalement faible (15).

D'autre part ces distances Pb^{II} -O "trop courtes" ne peuvent exister que si l'agitation thermique est suffisante: en effet la structure de Pb_3O_4 déterminée à 5 K montre que toutes les liaisons Pb^{II}–Osont alors "normales" (16).

De plus, on note la particularité de cette structure: les atomes de plomb divalents sont deux à deux en vis à vis et forment des tétraèdres sans atome d'oxygène intermédiaire.

Remerciements

Nous remercions le Dr. P. Meriel du C.E.N. de Saclay pour toute l'expérience et l'aide qu'il nous a apporté dans le domaine de la diffraction des neutrons.

Références

- 1. S. T. GROSS, J. Amer. Chem. Soc. 65, 1107 (1943).
- A. BYSTRÖM AND A. WESTGREN, Ark. Kem. Mineral. Geol. 16B, No. 14 (1943); Ark. Kemi. Mineral. Geol. 20A, No. 11 (1945); Ark. Kemi. Mineral. Geol. 25A, No. 13 (1947).
- 3. N.B.S. Circular No. 539.
- 4. M. K. FAYEK AND J. LECIEJEWICZ, Z. Anorg. Allg. Chem. 336, 104 (1965).
- A. I. ZASLAVSKI, J. D. KONDRASHOV, AND S. S. TOLKACHEV, *Dokl. Akad. Nauk. S.S.S.R.* 75, 559 (1950); A. I. ZASLAVSKI AND S. S. TOLKACHEV, *Zh. Fiz. Khim.* 26, 743 (1952).
- 6. J. LECIEJEWICZ AND I. PADLO, Naturwiss. 49, 373 (1962).
- 7. J. BOUVAIST AND D. WEIGEL, Acta Crist. A26, 510 (1970).
- W. J. MOORE AND L. PAULING, J. Amer. Chem. Soc. 63, 1392 (1941); A. BYSTRÖM, Ark. Kemi Mineral. Geol. 20A, No. 11 (1945); J. LECIEJEWICZ, Acta Cryst. 14, 1304 (1961).
- M. I. KAY, Acta Cryst. 14, 80 (1961); J. LECIE-JEWICZ, Acta Cryst. 14, 66 (1961).
- BLANCHARD, Thèse Lyon, 1970 et Communication personnelle.
- 11. J. R. GAVARRI, Thèse Paris, 1973.
- 12. T. KATZ, Thèse Paris, 1949.
- 13. J. R. GAVARRI AND D. WEIGEL, C.R. Acad. Sci. Série C, 275, 1267 (1972).
- 14. P. MERIEL, Communication personnelle.
- P. GARNIER, G. CALVARIN, AND D. WEIGEL, J. Chim. Phys. 11-12, 1711 (1972).
- 16. J. R. GAVARRI AND D. WEIGEL, C.R. Acad. Sci. Série C, 275, 1267–70 (1972).